
TuringMachines

keystroke

Definition of a Turing Machine
Onwhat makes a Turingmachine, Alan Turingmakes it clear in his original 1936 paper
on the subject[1], wherein he lays out a theoretical framework for a machine that can
calculate numbers in any way.

This machine is described as an infinite reel of tape with squares that contain a symbol
in them, a head that canmove one square to either side at a time, read the symbol in the
square it is on and write over it. This machine takes instructions based on its current
state and the symbol underneath it, and on that information can write a symbol onto
the tape, move left or right, and change state.

With this rather simple machine one might think, you can write an algorithm to cal-
culate anything calculable. In fact, the Turing machine is so all-encompassing that
whether or not a program or algorithm is deemed calculable is if it can be executed on
a Turing machine[2].

This is what identifies a Turing machine in Turing’s original theory. Since an infinite
tape reel is impractical, implementations of this have had to settle for merely very large
tape reels, or a lot of memory in the case of digital Turing machines. A language or
computer system is considered Turing-complete when you can program a Turing ma-
chine into it, and can therefore theoretically solve any calculable sequence provided
enough time and memory. This is what defines a Turing machine in the more prac-
tical sense.

Designing a Turing Machine
This Turing machine has the tape language of Γ = {0, 1, B}. Here I have used B to
represent a blank space on the tape and used the * as a wildcard to represent all symbols
as shorthand.

The TM is a simple algorithm for shifting a binary pattern to the left, which will mul-
tiply an inputted number by 2.

1



q0

q1

q2

q3 q4 halt

0/0
, L

1/1, L

*/0, R

*/1
, R

*/*, R

B/B, L

*/0, R

Ihave also tested this algorithmcomputationallyusing anonlineTuringmachine visual-
iser[3] that allows you to see the structure and step through your algorithm one change
at a time. I have included the source code for my algorithm below that can be used on
this website to verify how the algorithm works.

1 input: '1011'
2 blank: ' '
3 start state: read
4 table:
5 read:
6 0: {write: 0, L: shift0}
7 1: {write: 1, L: shift1}
8 ' ': {write: ' ', L: tidy}
9

10 shift0:
11 [0,1,' ']: {write: 0, R: return}
12

13 shift1:
14 [0,1,' ']: {write: 1, R: return}
15

16 return:
17 [0,1,' ']: {R: read}
18

19 tidy:
20 [0, 1]: {write: 0, R: halt}
21

22 halt:

2



Turing Machine Language
The language recognised by a Turing machine can be any symbol specified in the tape
language. However, I suspect that by this question you alsomeanhowTuringmachines
can be built to accept certain languages, running through a kind of error-checking pro-
cess to validate the input before accepting it and moving on to the function.[4]

There are two types of languages for Turing machines: Recursively enumerable and de-
cidable (or recursive). Recursively enumerable languages are tricky to verify, as while we
can check if they are accepted, there is no failure state. An invalid input will cause the
Turingmachine to loop infinitely, as due to the Entscheidungsproblem it is mathemat-
ically impossible to determine if a program will or will not halt.[1]

Decidable languages are far easier, as they have a defined rejection state that will, at the
end of reading the input, definitively tell you if the input is valid language or not.

Now that we have got the basic definitions of Turingmachine language out of the way,
we can look at how this language is structured. Since drawing complete graphs for ex-
amples would be time-consuming and I have to get this done in around 24 hours, I will
be using high-level abstraction. For what Turingmachine state graphs look like, see the
previous learning objective.

For example, a machine accepting the input L = {01n0|n ≥ 0}means that the input
must consist of a zero, any number of ones equal or above zero, and another zero. A
high-level description of how a Turing machine parses this:

1. If the scanned symbol is a 1 or blank, reject. If the symbol is a 0, move right and
switch to the next state.

2. If the scanned symbol is a blank, reject. If the symbol is a 1, move right and keep
the same state. If the symbol is a 0 move right and switch to the next state.

3. If the scanned symbol is 1 or 0, reject. If the symbol is a blank, accept.

This is a decidable language, as it has a clear reject and accept state that it will halt at
when the algorithm is finished.

There are other permutations of Turing machines that accept different kinds of lan-
guage, such as amulti-tapepermutation that can simultaneously read andwriten amount
of symbols, wheren is equal to the amount of tapes there are. Each read/write headmay
or may not be able to move independently depending on the specification.

3



Resources
[1] A.M. Turing (1936). On Computable NumbersWith an Application to the Entschei-
dungsproblem [Online]. Available: https://www.cs.virginia.edu/~robins/
Turing_Paper_1936.pdf
The original paper by Alan Turing, read to see how the original design was staked out
and what exactly identifies a Turing machine.

[2] B. Eater (2018). Making a computer Turing complete [Video]. Available: https:
//www.youtube.com/watch?v=AqNDk_UJW4k
Youtube video by Ben Eater on the instruction set required to make a super basic com-
puter Turing Complete. Watched to get a basic grasp on how they worked and how
they related to current computing, with instruction cards the equivalent of operation
codes.

[3] A. Lee (2016). Turing machine visualization [Website]. Available: http://
turingmachine.io/
Turing machine visualiser that accepts code of a basic syntax that allows you to display
and step through Turing machines. Used to practically test the turing machine in for
Learning Objective 2.

[4] B. Xiaohui (2020). MAS714: Algorithms and Theory of Computation [Lecture].
Available: https://www3.ntu.edu.sg/home/xhbei/MAS714/
Lecture slides and an exercise on Turing machines provided by the Nanyang Techno-
logical University of Singapore.

• https://www3.ntu.edu.sg/home/xhbei/MAS714/slides/slides17.
pdf
Read through these lecture slides to understand how Turing machines are
mathematically represented.

• https://www3.ntu.edu.sg/home/xhbei/MAS714/homework/
exercise2.pdf
An exercise on Turing machine languages that I will be using as an exam for this
activity.

4

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://www.youtube.com/watch?v=AqNDk_UJW4k
https://www.youtube.com/watch?v=AqNDk_UJW4k
http://turingmachine.io/
http://turingmachine.io/
https://www3.ntu.edu.sg/home/xhbei/MAS714/
https://www3.ntu.edu.sg/home/xhbei/MAS714/slides/slides17.pdf
https://www3.ntu.edu.sg/home/xhbei/MAS714/slides/slides17.pdf
https://www3.ntu.edu.sg/home/xhbei/MAS714/homework/exercise2.pdf
https://www3.ntu.edu.sg/home/xhbei/MAS714/homework/exercise2.pdf

